| 注册
首页|期刊导航|压力容器|基于 BP 神经网络的焊接冷裂纹声发射信号特征识别

基于 BP 神经网络的焊接冷裂纹声发射信号特征识别

张颖 孔德慧 张盛蠫 周俊鹏

压力容器2016,Vol.33Issue(3):51-55,5.
压力容器2016,Vol.33Issue(3):51-55,5.DOI:10.3969/j.issn.1001-4837.2016.03.008

基于 BP 神经网络的焊接冷裂纹声发射信号特征识别

Recognition for Acoustic Emission Signal Characteristics of Welding Cold Crack Based on BP Neural Network

张颖 1孔德慧 1张盛蠫 2周俊鹏1

作者信息

  • 1. 东北石油大学,黑龙江 大庆 163318
  • 2. 大庆炼化公司,黑龙江 大庆 163411
  • 折叠

摘要

Abstract

Acoustic emission technique is capable to monitor cold cracks.But in the long-time cooling process after welding,there exist a host of interference signals which make it harder to analysis and evalu-ate the signals.Thus,a BP neural network which can recognize welding cold crack signals was estab-lished.Its input unit was constituted by 5 typical parameters of the acoustic emission signals,as well as output unit was constituted by characteristics of crack signals and interference signals.Through training and testing the data from the experiment of SPV490Q steel plate with rigid restraint,the feasibility of the neural network was confirmed.

关键词

焊接冷裂纹/声发射技术/SPV490Q/BP神经网络

Key words

welding cold crack/acoustic emission technique/SPV490Q/BP neural network

分类

机械制造

引用本文复制引用

张颖,孔德慧,张盛蠫,周俊鹏..基于 BP 神经网络的焊接冷裂纹声发射信号特征识别[J].压力容器,2016,33(3):51-55,5.

基金项目

黑龙江省博士后科研启动项目 ()

压力容器

OACSTPCD

1001-4837

访问量0
|
下载量0
段落导航相关论文