电子学报2016,Vol.44Issue(4):959-966,8.DOI:10.3969/j.issn.0372-2112.2016.04.029
基于Schweizer-Sklar三角范数簇的反向三I算法的鲁棒性
Robustness of the Reverse Triple I Algorith ms Based on Schweizer-Sklar T-norms
摘要
Abstract
Since the family of Schweizer-Sklar t-norm is flexible,they have good characteristics for fuzzy reasoning based on these flexible operators.In this paper,the properties of the Schweizer-Sklar operators family and the robustness of fuzzy reasoning algorithms are studied.The family of Schweizer-Sklar t-norms are decreasing for the variable m.The family of Schweizer-Sklar t-conorms are increasing for the variable m.These perturbations of Schweizer-Sklar t-conorms,Schwei-zer-Sklar t-norms and its residual implications are given.We proved that Schweizer-Sklar residual implication operators (in-clude Lukasiewizc implication operator)are more suitable in fuzzy reasoning for m∈(0,∞).Moreover,we showed that the FMP reverse triple I algorithms based on the Schweizer-Sklar residual implications are robust for m∈(0,∞),and the FMT reverse triple I algorithms based on the Schweizer-Sklar residual implications are robust for m∈(0,∞).关键词
Schweizer-Sklar三角范数/反向三I算法/Minkowski距离/鲁棒性Key words
Schweizer-Sklar t-norms/reverse triple I algorithms/Minkowski distance/robustness分类
数理科学引用本文复制引用
罗敏霞,王雅萍..基于Schweizer-Sklar三角范数簇的反向三I算法的鲁棒性[J].电子学报,2016,44(4):959-966,8.基金项目
国家自然科学基金 ()