| 注册
首页|期刊导航|火力与指挥控制|基于改进粒子群算法的自动机性能评估

基于改进粒子群算法的自动机性能评估

孙致远 郑坚 熊超 殷军辉

火力与指挥控制2016,Vol.41Issue(4):117-120,4.
火力与指挥控制2016,Vol.41Issue(4):117-120,4.

基于改进粒子群算法的自动机性能评估

Performance Assessment of Auto-mechanism Based on Improved PSO

孙致远 1郑坚 1熊超 1殷军辉1

作者信息

  • 1. 军械工程学院,石家庄 050003
  • 折叠

摘要

Abstract

For the lack of effective method in the condition monitoring of the auto-mechanism of self-propelled anti-aircraft gun system,an approach of improved Particle Swarm Optimization(PSO)is introduced. Established the dynamic model of the auto-mechanism to simulate the recoil process and determined the characteristic quantity of the gun chest back curve to reflect the mechanical performance state,an approach of improved Particle Swarm Optimization(PSO)with better convergence and precision is proposed to evaluate the state parameters based on the curve characteristic quantity. The result shows the obvious advantage of the convergence and accuracy,and it achieves the state parameters assessment of auto-mechanism.

关键词

改进粒子群算法/性能评估/动力学分析

Key words

improved PSO/performance assessment/dynamics analysis

分类

军事科技

引用本文复制引用

孙致远,郑坚,熊超,殷军辉..基于改进粒子群算法的自动机性能评估[J].火力与指挥控制,2016,41(4):117-120,4.

火力与指挥控制

OA北大核心CSCDCSTPCD

1002-0640

访问量0
|
下载量0
段落导航相关论文