| 注册
首页|期刊导航|计算机应用研究|基于迁移学习和D-S理论的网络异常检测

基于迁移学习和D-S理论的网络异常检测

赵新杰 刘渊 孙剑

计算机应用研究2016,Vol.33Issue(4):1137-1140,4.
计算机应用研究2016,Vol.33Issue(4):1137-1140,4.DOI:10.3969/j.issn.1001-3695.2016.04.039

基于迁移学习和D-S理论的网络异常检测

New network anomaly detection using transfer learning and D-S theory

赵新杰 1刘渊 1孙剑1

作者信息

  • 1. 江南大学 数字媒体学院,江苏 无锡214122
  • 折叠

摘要

Abstract

The current approaches of anomaly detection cannot effectively detect unknown network attacks,which follow the same or different distribution.To solve this problem,this paper proposed a new network anomaly detection using transfer learning technique and D-S theory.At first,this paper created a model for known network attacks with transfer learning meth-od,which considered the distinctions in anomaly attacks following different distribution.Secondly,combined with D-S theory, the classifier could pinpoint unknown network attacks as outliers.The results show that the proposed detection approach has a higher detection rate for unknown network anomalies.

关键词

迁移学习/D-S理论/异常行为分析/数据融合

Key words

transfer learning/D-S theory/abnormal behavior analysis/data fusion

分类

信息技术与安全科学

引用本文复制引用

赵新杰,刘渊,孙剑..基于迁移学习和D-S理论的网络异常检测[J].计算机应用研究,2016,33(4):1137-1140,4.

基金项目

国家自然科学基金资助项目(61103223);江苏省自然科学基金重点资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文