| 注册
首页|期刊导航|计算机应用研究|一般贝叶斯网络分类器及其学习算法

一般贝叶斯网络分类器及其学习算法

Sein Minn 傅顺开 吕天依 蔡奕侨

计算机应用研究2016,Vol.33Issue(5):1327-1334,8.
计算机应用研究2016,Vol.33Issue(5):1327-1334,8.DOI:10.3969/j.issn.1001-3695.2016.05.011

一般贝叶斯网络分类器及其学习算法

Algorithm for exact recovery of Bayesian network for classification

Sein Minn 1傅顺开 1吕天依 1蔡奕侨1

作者信息

  • 1. 华侨大学 计算机科学与技术学院,福建 厦门361021
  • 折叠

摘要

Abstract

General Bayesian network classifier (GBNC)was the effective local section of the Bayesian network (BN)facing classification problem.Conventionally,it had to learn the global BN first,and existing structure learning algorithm imposed re-striction on possible problem scale.The paper developed an algorithm called IPC-GBNC for the exact recovery of GBNC with only local search.It conducted a breadth-first search with depth no more than 2 given the class node as the center.It proved its soundness,and experiments on synthetic and UCI real-world datasets demonstrate the merits of IPC-GBNC over classical PC al-gorithm which conducted global search:a)it produces same as or even higher quality of structure than PC,b)it saves considera-ble computation over PC,and c)effective dimension reduction is realized.As compared with state-of-the-art classifiers,GBNC not only performs as well on prediction,but inherits merits from being graphical model,like compact representation and power-ful inference ability.

关键词

贝叶斯网络/马尔可夫毯/贝叶斯分类器/结构学习/特征选择/局部搜索

Key words

Bayesian network/Markov blanket/Bayes classifier/structure learning/feature selection/local search

分类

信息技术与安全科学

引用本文复制引用

Sein Minn,傅顺开,吕天依,蔡奕侨..一般贝叶斯网络分类器及其学习算法[J].计算机应用研究,2016,33(5):1327-1334,8.

基金项目

国家自然科学基金资助项目(61305058,61300139,61102163);厦门科技计划基金资助项目(3505Z20133027);华侨大学科研基金资助项目(11Y0274,12HJY18);中央高校基本科研基金资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文