| 注册
首页|期刊导航|计算机应用与软件|基于HM-SVMs的问句语义分析模型

基于HM-SVMs的问句语义分析模型

范士喜 韩喜双 相洋 陈毅

计算机应用与软件2016,Vol.33Issue(5):84-86,119,4.
计算机应用与软件2016,Vol.33Issue(5):84-86,119,4.DOI:10.3969/j.issn.1000-386x.2016.05.021

基于HM-SVMs的问句语义分析模型

A QUESTION SEMANTIC ANALYSIS MODEL BASED ON HM-SVMs

范士喜 1韩喜双 1相洋 1陈毅1

作者信息

  • 1. 哈尔滨工业大学深圳研究生院 广东 深圳 518055
  • 折叠

摘要

Abstract

Traditional question semantic analysis mainly focus on simple questions in regard to category of facts,but lacks effective semantic analysis method for open field-oriented complex questions.In view of this,we present a new question semantic analysis model.The model maps questions from text space onto a structured semantic space,and achieves semantic analysis and expression of questions.By annotating semantic information in questions the model implements three kinds of analysis works of questions classification,question topic identification and restrictive information identification.We employ hidden Markov support vector machines (HM-SVMs),a serialisation annotation tool,to realise the automatic annotation of the model,and reaches an accuracy of 86.7%.Experimental results show that HM-SVMs is better than MEMM,CRF,M3N and other models in annotation accuracy and efficiency,and achieves the desired effect.

关键词

问答系统/问句语义分析/隐马尔科夫支持向量机

Key words

Q&A system/Semantic analysis of question/HM-SVMs

分类

信息技术与安全科学

引用本文复制引用

范士喜,韩喜双,相洋,陈毅..基于HM-SVMs的问句语义分析模型[J].计算机应用与软件,2016,33(5):84-86,119,4.

基金项目

广东省教育科学规划教育信息技术研究专项课题(11 JXN039)。范士喜,助理研究员,主研领域问答系统。 ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文