| 注册
首页|期刊导航|计算机应用与软件|一种用于行人检测的隐式训练卷积神经网络模型

一种用于行人检测的隐式训练卷积神经网络模型

黄咨 刘琦 陈致远 赵宇明

计算机应用与软件2016,Vol.33Issue(5):148-153,6.
计算机应用与软件2016,Vol.33Issue(5):148-153,6.DOI:10.3969/j.issn.1000-386x.2016.05.037

一种用于行人检测的隐式训练卷积神经网络模型

A LATENT TRAINING MODEL OF CONVOLUTIONAL NEURAL NETWORKS FOR PEDESTRIAN DETECTION

黄咨 1刘琦 1陈致远 1赵宇明1

作者信息

  • 1. 上海交通大学电子信息与电气工程学院系统控制与信息处理教育部重点实验室 上海 200240
  • 折叠

摘要

Abstract

Pedestrian detection has become one of the hot research topics in various social fields.Convolutional neural networks have excellent learning ability.The characteristics of targets learned by these networks are more natural and more conducive to distinguishing different targets.However,traditional convolutional neural network models have to process entire target.Meanwhile,all the training samples need to be pre-labelled correctly,these hamper the development of convolutional neural network models.In this paper,we propose a convolutional neural network-based latent training model.The model reduces the computation complexity by integrating multiple part detection modules and learns the targets classification rules from unlabelled samples by adopting a latent training method.In the paper we also propose a two-stage learning scheme to overlay the size of the network step by step.Evaluation of the tests on public static pedestrian detection dataset,INRIA Person Dataset[1],demonstrates that our model achieves 98% of detection accuracy and 95% of average precision.

关键词

行人检测/隐式训练/部件检测/卷积神经网络

Key words

Pedestrian detection/Latent training/Part detection/Convolutional neural networks

分类

信息技术与安全科学

引用本文复制引用

黄咨,刘琦,陈致远,赵宇明..一种用于行人检测的隐式训练卷积神经网络模型[J].计算机应用与软件,2016,33(5):148-153,6.

基金项目

国家自然科学基金项目(61175009);上海市产学研合作项目(沪CXY-2013-82)。 ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文