| 注册
首页|期刊导航|计算机应用与软件|相关向量机基函数和超参的协同优化

相关向量机基函数和超参的协同优化

张名芳 付锐 郭应时 程文冬

计算机应用与软件2016,Vol.33Issue(5):239-241,264,4.
计算机应用与软件2016,Vol.33Issue(5):239-241,264,4.DOI:10.3969/j.issn.1000-386x.2016.05.060

相关向量机基函数和超参的协同优化

COLLABORATIVE OPTIMISATION OF BASE FUNCTION OF RELEVANCE VECTOR MACHINE AND SUPER PARAMETERS

张名芳 1付锐 1郭应时 2程文冬1

作者信息

  • 1. 长安大学汽车学院 陕西 西安 710064
  • 2. 长安大学汽车运输安全保障技术交通行业重点实验室 陕西 西安 710064
  • 折叠

摘要

Abstract

Traditional relevance vector machine has the conflict among training error,sparseness of weight matrix and zero-approaching of log marginal likelihood function.To solve this problem,in this paper we present to utilise receiver operation curve to carry out collaborative optimisation on parameters of relevance vector machine and kernel function.According to the accuracy rate of model classification we determine proper kernel function.By introducing the classification accuracy rate of model at 5 percent false positive rate we improve the marginal likelihood function of super parameters.In order to ensure the maximisation of weight matrix sparseness,we choose the optimal relevance vectors combination through the threshold of marginal likelihood function.The cross-validation algorithm and the receiver operation curves of all cross models are used to estimate the optimal super parameters of relevance vector machine.Moreover,we use vehicle yaw angular velocity to test the optimised model,results show that the training time of the proposed algorithm is a little bit longer,but the test time is obviously shorter than traditional estimation algorithm,and the classification performance of the optimised model is improved dramatically.

关键词

相关向量机/基函数/超参/协同优化/ROC 曲线

Key words

Relevance vector machine/Kernel function/Super parameters/Collaborative optimisation/Receiver operation curve

分类

信息技术与安全科学

引用本文复制引用

张名芳,付锐,郭应时,程文冬..相关向量机基函数和超参的协同优化[J].计算机应用与软件,2016,33(5):239-241,264,4.

基金项目

国家自然科学基金项目(61374196,51178053);教育部长江学者和创新团队发展计划项目(IRT1286)。 ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文