| 注册
首页|期刊导航|计算机应用与软件|基于粗糙集理论的 PSO-IOIF-Elman 神经网络建模

基于粗糙集理论的 PSO-IOIF-Elman 神经网络建模

田娜 南敬昌 高明明

计算机应用与软件2016,Vol.33Issue(5):248-251,4.
计算机应用与软件2016,Vol.33Issue(5):248-251,4.DOI:10.3969/j.issn.1000-386x.2016.05.062

基于粗糙集理论的 PSO-IOIF-Elman 神经网络建模

PSO-IOIF-ELMAN NEURAL NETWORK MODELLING BASED ON ROUGH SET THEORY

田娜 1南敬昌 1高明明1

作者信息

  • 1. 辽宁工程技术大学电子与信息工程学院 辽宁 葫芦岛 125105
  • 折叠

摘要

Abstract

In view of the advantages and disadvantages of power amplifier modelling in system-level simulation,this paper proposes a method using simplified particle swarm optimisation (PSO)algorithm to optimise the improved OIF-Elman neural network (PSO-IOIF-Elman) power amplifier behaviour model in combination with rough set theory.Considering different influences of small signal and large signal on the PA in regard to nonlinear characteristic of memory effect,and combing the characteristics of AM-AMand AM-PMmodulation distortion,the model describes the self-feedback coefficient of OIF-Elman neural network to the normalised input and output voltage data.It employs the simplified PSO optimisation algorithm for preventing from falling into local optimal,and uses rough set theory to correct and compensate model’s forecast value for improving the prediction precision.Through Matlab simulation comparison,the training error of the model reduces by 9.53% and the convergence rate improves by 11.31%,therefore verify the validity and reliability of the modelling method.

关键词

功放记忆非线性/行为模型/IOIF-Elman 神经网络/简化粒子群算法/粗糙集理论

Key words

Nonlinear characteristic of power amplifier memory effect/Behaviour model/IOIF-Elman neural network/Simplified particle swarm optimisation/Rough set theory

分类

信息技术与安全科学

引用本文复制引用

田娜,南敬昌,高明明..基于粗糙集理论的 PSO-IOIF-Elman 神经网络建模[J].计算机应用与软件,2016,33(5):248-251,4.

基金项目

国家自然科学基金项目(61372058);辽宁省高等学校优秀科技人才支持计划项目(LR2013012);辽宁工程技术大学研究生科研项目(5B2014032)。 ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文