吉林大学学报(理学版)2016,Vol.54Issue(3):446-450,5.DOI:10.13413/j.cnki.jdxblxb.2016.03.08
完全可积二元一阶微分方程的局部分支
Local Bifurcations of 2-Variable First-Order Differential Equations with Complete Integral
摘要
Abstract
Using Legendre singularity theory, we studied the local bifurcations of completely integrable holonomic systems of 2-variable first-order non-linearity partial differential equations whose corresponding one-parameter integral diagrams are ℝ+-simple and stable so as to obtain the classification of local bifurcations.Based on the result,the qualitative state of this system can be estimated when the parameters are changed.关键词
Legendre 奇点理论/二元一阶非线性偏微分方程/局部分支/分类Key words
Legendre singularity theory/2-variable first-order non-linearity partial differential equation/local bifurcation/classification分类
数理科学引用本文复制引用
许静波,程晓亮,陈亮..完全可积二元一阶微分方程的局部分支[J].吉林大学学报(理学版),2016,54(3):446-450,5.基金项目
国家自然科学基金(批准号:11301215 ()
11101072)和吉林省自然科学基金(批准号:20150520052JH ()
20130522094JH ()
201201081) ()