锥拟凸向量优化问题解的稳定性及广义适定性OA北大核心CSCDCSTPCD
Stability and Generalized Well-Posedness of Solutions for Cone Quasiconvex Vector Optimization Problems
利用 Kuratowski-Painlevé关于集列的收敛性和水平集等特征,通过锥理论和方法研究目标映射是锥拟凸映射的拟凸向量优化问题有效解和弱有效解的稳定性及广义适定性,得到了强连续锥拟凸映射序列与其极限映射的有效解和弱有效解之间的关系及其稳定性和广义适定性的充分性条件。
Using the characterizations of Kuratowski-Painlevé set-convergence and level set, we studied the stability and generalized well-posedness of efficient solutions and weakly efficient solutions for quasi-convex vector optimization problem which the objective mapping was cone quasiconvex mapping by means of cone theory and methods,and obtained some results about stability and generalized well-posedness of efficient solutions and weakly efficient solutions for s…查看全部>>
黄龙光;储理才
集美大学 理学院,福建 厦门 361021集美大学 理学院,福建 厦门 361021
数理科学
强连续有效解锥拟凸映射水平集
strongly continuousefficient solutioncone quasiconvex mappinglevel set
《吉林大学学报(理学版)》 2016 (3)
集值优化问题的逼近解及二阶最优性条件
461-469,9
国家自然科学基金(批准号:11461044)
评论