| 注册
首页|期刊导航|中南大学学报(自然科学版)|基于半监督PCA-LPP流形学习算法的故障降维辨识

基于半监督PCA-LPP流形学习算法的故障降维辨识

张晓涛 唐力伟 王平 邓士杰

中南大学学报(自然科学版)2016,Vol.47Issue(5):1559-1564,6.
中南大学学报(自然科学版)2016,Vol.47Issue(5):1559-1564,6.DOI:10.11817/j.issn.1672-7207.2016.05.015

基于半监督PCA-LPP流形学习算法的故障降维辨识

Fault identification and dimensionality reduction method based on semi-supervised PCA-LPP manifold learning algorithm

张晓涛 1唐力伟 1王平 1邓士杰1

作者信息

  • 1. 军械工程学院 火炮工程系,河北 石家庄,050003
  • 折叠

摘要

Abstract

A novel fault identification dimensionality reduction method based on semi-supervised PCA-LPP manifold learning algorithmwas proposed. The objective function of projection matrix of semi-supervised PCA-LPP was constructed by global structure and local structure,the global structure was described by PCA, the local structure described by LPP and category information of samples,andthe calculation principle of semi-supervised PCA-LPP manifold learning algorithm was given.The processing results of wine dataset of UCI show thatthesemi-supervised PCA-LPP method has a good ability of dimensionality reduction.Aiming at the gearbox acoustic emission signals, its eigenvectorsisconstructed by wavelet packet energy entropy, andthedimensionality reduction results of eigenvectorsare giventothe support vector machine, the fault identification of semi-supervised PCA-LPP method obtainshigher identification rate thanthat ofLPP and PCA, because the method considersthe similarities and differences between all eigenvectors.

关键词

流形学习/局部保持投影/主元分析/故障诊断/故障辨识

Key words

manifold learning/locality preserving projection/principal component analysis/fault diagnosis/pattern recognition

分类

机械制造

引用本文复制引用

张晓涛,唐力伟,王平,邓士杰..基于半监督PCA-LPP流形学习算法的故障降维辨识[J].中南大学学报(自然科学版),2016,47(5):1559-1564,6.

基金项目

国家自然科学基金资助项目(50775219);军队科研资助项目([2011]107)(Project(50775219) supported by the National Natural Science Foundation of China (50775219)

Project([2011]107) supported by the Military Research Foundation) ([2011]107)

中南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1672-7207

访问量0
|
下载量0
段落导航相关论文