| 注册
首页|期刊导航|计算机工程与应用|呼叫中心分块回归话务量预测

呼叫中心分块回归话务量预测

张沪寅 胡瑞芸 何政

计算机工程与应用2016,Vol.52Issue(12):90-94,5.
计算机工程与应用2016,Vol.52Issue(12):90-94,5.DOI:10.3778/j.issn.1002-8331.1501-0160

呼叫中心分块回归话务量预测

Block regression traffic prediction model for call center

张沪寅 1胡瑞芸 1何政1

作者信息

  • 1. 武汉大学 计算机学院,武汉 430072
  • 折叠

摘要

Abstract

In order to obtain the prospective traffic data, solve the seats arrangement problem of call center, realize the rational allocation of human resources, block regression traffic prediction model, based on support vector machine and K-nearest neighbor algorithm is proposed(SKBR), after analyzing the characteristics of historical traffic data. According to the date type, traffic can be divided into weekday traffic, weekend traffic and holiday traffic, and different model is used to predict the corresponding traffic. Taking the traffic of a province electric power call center for example, experiments are carried on the MATLAB platform. Results show that compared with the SVM model and improved SVM model for its method of searching parameters, SKBR model has improved the prediction accuracy.

关键词

话务量/预测/支持向量机/近邻算法/预测准确性

Key words

traffic/prediction/support vector machine/nearest neighbor algorithm/prediction accuracy

分类

信息技术与安全科学

引用本文复制引用

张沪寅,胡瑞芸,何政..呼叫中心分块回归话务量预测[J].计算机工程与应用,2016,52(12):90-94,5.

基金项目

高等学校博士学科点专项科研基金(No.20130141110022);武汉市科学技术局(No.201302038)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文