| 注册
首页|期刊导航|计算机应用与软件|基于MapReduce的DHP算法并行化研究

基于MapReduce的DHP算法并行化研究

周国军 吴庆军

计算机应用与软件2016,Vol.33Issue(6):47-50,91,5.
计算机应用与软件2016,Vol.33Issue(6):47-50,91,5.DOI:10.3969/j.issn.1000-386x.2016.06.012

基于MapReduce的DHP算法并行化研究

RESEARCH ON PARALLELISATION OF DHP ALGORITHM BASED ON MAPREDUCE

周国军 1吴庆军1

作者信息

  • 1. 玉林师范学院数学与信息科学学院 广西 玉林537000
  • 折叠

摘要

Abstract

DHP algorithm is confronted with the problems in association rules mining for big data such as long execution time and low effi-ciency,etc.In order to solve the problems,we studied the parallelisation strategy of DHP algorithm.According to MapReduce parallel program-ming model of cloud computing platform Hadoop,we designed a parallel DHP algorithm,presented the overall flow of the algorithm and the algorithm descriptions of Map function and Reduce function.Compared with DHP algorithm,the parallel DHP algorithm makes use of the pow-erful computing capacity of Hadoop cluster,improves the efficiency of mining association rules from big data.We analysed the execution process of parallel DHP algorithm by example,and carried out experiments on a couple of datasets.Experimental results showed that the paral-lel DHP algorithm has good speedup and scalability on big data.

关键词

MapReduce/Hadoop/DHP算法/关联规则

Key words

MapReduce/Hadoop/DHP algorithm/Association rules

分类

信息技术与安全科学

引用本文复制引用

周国军,吴庆军..基于MapReduce的DHP算法并行化研究[J].计算机应用与软件,2016,33(6):47-50,91,5.

基金项目

广西高校科学技术研究立项项目(LX20&nbsp ()

14300)。 ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文