| 注册
首页|期刊导航|现代电子技术|基于模拟退火菌群-RBF神经网络的甲醇净化CO2含量软测量模型

基于模拟退火菌群-RBF神经网络的甲醇净化CO2含量软测量模型

王潇逸 张凌波 顾幸生

现代电子技术2016,Vol.39Issue(13):93-98,6.
现代电子技术2016,Vol.39Issue(13):93-98,6.DOI:10.16652/j.issn.1004-373x.2016.13.023

基于模拟退火菌群-RBF神经网络的甲醇净化CO2含量软测量模型

SA-BFO and RBF neural network based soft measurement model for CO2 content purified by methanol

王潇逸 1张凌波 1顾幸生1

作者信息

  • 1. 华东理工大学 化工过程先进控制和优化技术教育部重点实验室,上海 200237
  • 折叠

摘要

Abstract

In order to solve the problems of the bacterial foraging optimization(BFO)algorithm easily falls into the local optimum,and the reverse direction during chemotaxis operation is uncertain,the characteristic of simulated annealing(SA)al⁃gorithm is used to propose the simulated annealing and bacterial foraging optimization (SA⁃BFO) algorithm. SA algorithm can reach the global optimal solution to the maximum extent while obtaining the local optimal solution. The improved algorithm is ap⁃plied to optimizing the RBF neural network,and establishment the soft measurement model for CO2 content purified by metha⁃nol. The simulation results show that the model has high accuracy and precision,and has a certain contribution value for greatly improving the methanol production.

关键词

菌群算法/模拟退火/RBF神经网络/甲醇净化

Key words

bacterial foraging optimization/simulated annealing/RBF neural network/methanol purification

分类

信息技术与安全科学

引用本文复制引用

王潇逸,张凌波,顾幸生..基于模拟退火菌群-RBF神经网络的甲醇净化CO2含量软测量模型[J].现代电子技术,2016,39(13):93-98,6.

基金项目

中央高校基本科研业务专项资金上海市重点学科项目 ()

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文