| 注册
首页|期刊导航|西南石油大学学报(自然科学版)|基于敏感地震属性波形分类的流体预测研究

基于敏感地震属性波形分类的流体预测研究

赵忠泉 贺振华 万晓明 帅庆伟

西南石油大学学报(自然科学版)2016,Vol.38Issue(3):75-82,8.
西南石油大学学报(自然科学版)2016,Vol.38Issue(3):75-82,8.DOI:10.11885/j.issn.1674-5086.2014.04.13.03

基于敏感地震属性波形分类的流体预测研究

A Study on Fluid Prediction Based on the Classification of Sensitive Seismic Attributes

赵忠泉 1贺振华 2万晓明 1帅庆伟1

作者信息

  • 1. 国土资源部海底矿产资源重点实验室·广州海洋地质调查局,广东 广州 510760
  • 2. 油气藏地质及开发工程”国家重点实验室·成都理工大学,四川 成都 610059
  • 折叠

摘要

Abstract

The ability to identify gas-bearing and water-bearing sands of nine fluid identification factors has been compared, and the results show that the High-Sensitivity-Fluid-Identification-Factor has a strong ability to identify. The neural network and the Principal-Component-Analysis-neural-network are applied to high-quality 3-D data of HSFIF to perform the waveform analysis during the gas bearing interval in study area L of basin-S and good mapping effect has been achieved. The facies maps were analyzed and compared with the logging′interpretation. It proves the application of the PCA-neural network method can greatly reduce the difficulty of seismic facies interpretation of the map. In this paper,the application range of waveform classification is extended from seismic-sedimentary-facies analysis and reservoir prediction to the analysis and processing of the fluid factors in the target layers,thereby we can predict the fluid in layers. It is a new kind of valuable complement to fluid identification and prediction by using fluid factor only in profile and slice. It is the first time that the waveform classification techniques has been applied to fluid prediction. We believe that the method along with the results of other explanations has a guiding significance to reduce exploration risk and enhance drilling success rate.

关键词

地震属性/波形分类/主成份分析/流体因子/流体预测

Key words

seismic attribute/waveform classification/PCA/fluid factor/fluid prediction

分类

能源科技

引用本文复制引用

赵忠泉,贺振华,万晓明,帅庆伟..基于敏感地震属性波形分类的流体预测研究[J].西南石油大学学报(自然科学版),2016,38(3):75-82,8.

基金项目

国家自然科学基金(40774064)。 ()

西南石油大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1674-5086

访问量0
|
下载量0
段落导航相关论文