| 注册
首页|期刊导航|电讯技术|以非负矩阵分解提取局部特征的SAR目标稀疏表示分类

以非负矩阵分解提取局部特征的SAR目标稀疏表示分类

张之光 雷宏

电讯技术2016,Vol.56Issue(5):495-500,6.
电讯技术2016,Vol.56Issue(5):495-500,6.DOI:10.3969/j.issn.1001-893x.2016.05.005

以非负矩阵分解提取局部特征的SAR目标稀疏表示分类

Sparse Representation Classification of SAR Targets with Local Features Extracted by Non-negative Matrix Factorization

张之光 1雷宏1

作者信息

  • 1. 中国科学院 电子学研究所,北京100190
  • 折叠

摘要

Abstract

Synthetic aperture radar( SAR) target classification is one of the core functions in automatic tar-gets recognition( ATR) system. It is essential in battle field surveillance,too. According to the characteris-tics that SAR images have prominent local scattering,it is proposed to perform non-negative matrix factori-zation( NMF) on the training samples to get low dimensional local encoding matrix,and subsequently per-form sparse representation classification( SRC) based on this encoding matrix. Processing results on real data of civilian vehicle targets in Gotcha project demonstrate that the proposed method outperforms other di-mension reduction methods such as down-sampling,random projection and principle components analysis, which are adopted with SRC. In this way,superiority of the method is revealed. Besides,the performances of SRC with and without non-negativity constraints are compared and analyzed by experiments. The experiment result reveals that SRC with non-negativity constraints leads to degradation of classification performance. In this way,it is unadvisable to include non-negativity constraint with regard to classification problem.

关键词

合成孔径雷达/稀疏表示/目标分类/非负矩阵分解/局部特征提取

Key words

synthetic aperture radar(SAR)/sparse representation/targets classification/non-negative ma-trix factorization(NMF)/local feature extraction

分类

信息技术与安全科学

引用本文复制引用

张之光,雷宏..以非负矩阵分解提取局部特征的SAR目标稀疏表示分类[J].电讯技术,2016,56(5):495-500,6.

电讯技术

OA北大核心CSTPCD

1001-893X

访问量0
|
下载量0
段落导航相关论文