| 注册
首页|期刊导航|苏州科技学院学报(自然科学版)|基于分数阶模型的完整非保守系统的Lie对称性与守恒量

基于分数阶模型的完整非保守系统的Lie对称性与守恒量

张孝彩 张毅

苏州科技学院学报(自然科学版)2016,Vol.33Issue(2):8-13,6.
苏州科技学院学报(自然科学版)2016,Vol.33Issue(2):8-13,6.

基于分数阶模型的完整非保守系统的Lie对称性与守恒量

The Lie symmetry and conserved quantity for holonomic non-conservative systems based on fractional models

张孝彩 1张毅2

作者信息

  • 1. 苏州科技大学 数理学院,江苏 苏州 215009
  • 2. 苏州科技大学 土木工程学院,江苏 苏州 215011
  • 折叠

摘要

Abstract

In this paper, we studied the Lie symmetry and conserved quantity for holonomic non-conservative systems based on fractional models. Firstly, we deduced the fractional principle of d'Alembert-Lagrange from the fractional Hamilton principle and established the fractional Euler-Lagrange equations. The Lie symmetry under the general infinitesimal transformations was investigated and its determination equations were established. More-over, the definition and criterion of the Lie symmetry for the fractional holonomic non-conservative systems were given. Secondly, we provided the existence condition and the form of the Noether conserved quantity deduced from the Lie symmetry. Lastly, two examples were given to illustrate the application of the results.

关键词

分数阶模型/非保守系统/Lie对称性/Noether型守恒量

Key words

fractional models/non-conservative systems/Lie symmetry/Noether conserved quantity

分类

数理科学

引用本文复制引用

张孝彩,张毅..基于分数阶模型的完整非保守系统的Lie对称性与守恒量[J].苏州科技学院学报(自然科学版),2016,33(2):8-13,6.

基金项目

国家自然科学基金资助项目(11272227);江苏省普通高校研究生科研创新计划项目(KYZZ_0350);苏州科技学院研究生科研创新计划项目 ()

苏州科技学院学报(自然科学版)

2096-3289

访问量0
|
下载量0
段落导航相关论文