融合Hu矩与BoF-SURF支持向量机的手势识别OA北大核心CSCDCSTPCD
Hand gesture recognition based on combining Hu moments and BoF-SURF support vector machine
基于尺度不变特征变换的特征包(BoF-SIFT)支持向量机的分类方法具有较好的手势识别效果,但是计算复杂度高、实时性较差。为此,提出了融合Hu矩与基于快速鲁棒特征的特征包(BoF-SURF)支持向量机(SVM)的手势识别方法。特征包模型中用快速鲁棒性特征(SURF)算法替换尺度不变特征变换(SIFT)算法提取特征,提高了实时性,并引入Hu矩描述手势全局特征,进一步提高识别率。实验结果表明,算法无论是实时性还是识别率都要高于BoF-SIFT支持向量机方法。
The classification method using bag of features-scale invariant feature transformation(BoF-SIFT) support vector machine got a better result on hand gesture recognition. However, it had a high computational complexity which results in the worse real-time p
SUI Yun-heng;GUO Yuan-shu
College of Information Engineering,Chang'an University,Xi'an 710064,ChinCollege of Information Engineering,Chang'an University,Xi'an 710064,Chin
信息技术与安全科学
手势识别特征包模型快速鲁棒特征Hu不变矩支持向量机
hand gesture recognitionbag-of-features modelspeeded up robust feature(SURF)Hu invariant momentssupport vector machine(SVM)
《计算机应用研究》 2014 (3)
953-956,960,5
评论