| 注册
首页|期刊导航|计算机应用与软件|基于改进的LBP方法相结合的尿液细胞识别研究

基于改进的LBP方法相结合的尿液细胞识别研究

秦颖博 孙杰

计算机应用与软件Issue(10):102-104,107,4.
计算机应用与软件Issue(10):102-104,107,4.DOI:10.3969/j.issn.1000-386x.2013.10.028

基于改进的LBP方法相结合的尿液细胞识别研究

ON URINE CELLS RECOGNITION BASED ON IMPROVED LOCAL BINARY PATTERN

秦颖博 1孙杰2

作者信息

  • 1. 天津理工大学计算机与通信工程学院 天津300384
  • 2. 天津理工大学薄膜电子与通信器件天津市重点实验室 天津300384
  • 折叠

摘要

Abstract

The effects of urine cells identification and classification using support vector machine (SVM)in two colour coordinate systems of RGB and HSI respectively are analysed and compared in this paper.The effects of comprehensive recognition of the classified urine cells using colour feature parameter and texture feature parameter are also analysed and compared.We also propose a texture feature extraction method which is based on improved local binary pattern (LBP).Experimental results show that the method combining the HSI colour feature, the improved LBP-based texture feature and the SVM has good effect in urine cells recognition and classification.

关键词

支持向量机/图像处理/机器学习/局部二值模式(LBP)/目标识别

Key words

Support vector machine (SVM)/Image processing/Machine learning/LBP/Target recognition

分类

信息技术与安全科学

引用本文复制引用

秦颖博,孙杰..基于改进的LBP方法相结合的尿液细胞识别研究[J].计算机应用与软件,2013,(10):102-104,107,4.

基金项目

天津市科委自然科学基金项目(06 YF&nbsp,JMC15600). (06 YF&nbsp,JMC15600)

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文