| 注册
首页|期刊导航|电子学报|基于动态种群多策略差分进化模型的多目标进化算法

基于动态种群多策略差分进化模型的多目标进化算法

王亚辉 吴金妹 贾晨辉

电子学报2016,Vol.44Issue(6):1472-1480,9.
电子学报2016,Vol.44Issue(6):1472-1480,9.DOI:10.3969/j.issn.0372-2112.2016.06.031

基于动态种群多策略差分进化模型的多目标进化算法

MuIti-objective EvoIutionary AIgorithm Based on Dynamic Popu Iation Mu Iti-strategy DifferentiaI ModeIs

王亚辉 1吴金妹 1贾晨辉2

作者信息

  • 1. 华北水利水电大学机械学院,河南郑州450011
  • 2. 河南科技大学机电工程学院,河南洛阳471023
  • 折叠

摘要

Abstract

According to the characteristics of differential evolution,a multi-objective evolutionary algorithm based on dynamic population multi-strategy differential models and decomposition (MOEA/D-DPMD)is proposed to solve the ex-pensive problems.The algorithm divides the population into three sub-populations and each sub-population is corresponding to a differential evolution strategy.In order to improve the performance of the algorithm,the size of sub-population is adjus-ted dynamically on the basis of a differential evolution strategy contribution.Each strategy is adopted to participate in coordi-nation during the evolution process.Through the test simulation on the LZ09 benchmarks with complicated Pareto Set (PS), MOEA/D-DPMD shows a best performance with a neighborhood size of 25 .Via the comparative analysis of different schemes of differential strategy,MOEA/D-DPMD also performs well.The experimental results indicate that MOEA/D-DPMD has a better performance in terms of convergence and diversity compared with MOEA/D and NSGA-II,which is an effective way for solving complex multi-objective optimization problems.

关键词

分解机制/多策略差分进化/动态种群/多目标优化

Key words

decomposition mechanism/multi-strategy differential evolution/dynamic population/multi-objective op-timization

分类

信息技术与安全科学

引用本文复制引用

王亚辉,吴金妹,贾晨辉..基于动态种群多策略差分进化模型的多目标进化算法[J].电子学报,2016,44(6):1472-1480,9.

基金项目

国家自然科学基金 ()

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量4
|
下载量0
段落导航相关论文