| 注册
首页|期刊导航|国防科技大学学报|信号稀疏分解理论在轴承故障检测中的应用

信号稀疏分解理论在轴承故障检测中的应用

张新鹏 胡茑庆 程哲 胡雷 陈凌

国防科技大学学报2016,Vol.38Issue(3):141-147,7.
国防科技大学学报2016,Vol.38Issue(3):141-147,7.DOI:10.11887/j.cn.201603024

信号稀疏分解理论在轴承故障检测中的应用

Application of signal sparse decomposition theory in bearing fault detection

张新鹏 1胡茑庆 1程哲 1胡雷 1陈凌1

作者信息

  • 1. 国防科技大学 装备综合保障技术重点实验室,湖南 长沙 410073
  • 折叠

摘要

Abstract

A new bearing fault detection method based on the signal sparse decomposition theory was developed.An over-complete dictionary on which the bearing vibration signals in normal state can be represented sparsely was trained by the dictionary learning method.According to the fact that this dictionary just can sparsely represent the signals in normal state,the bearing vibration signal in unknown state was decomposed on this dictionary.The bearing state was determined by comparing the representation error of the signal on the dictionary with the given error threshold,and then the bearing fault detection was achieved.Experimental tests validate the effectiveness of the proposed method in bearing fault detection when setting an appropriate error threshold.

关键词

轴承故障检测/稀疏分解/字典学习/稀疏表示误差

Key words

bearing fault detection/sparse decomposition/dictionary learning/sparse representation error

分类

信息技术与安全科学

引用本文复制引用

张新鹏,胡茑庆,程哲,胡雷,陈凌..信号稀疏分解理论在轴承故障检测中的应用[J].国防科技大学学报,2016,38(3):141-147,7.

基金项目

国家自然科学基金资助项目(51375484,51205401,51475463);国防科学技术大学博士生跨学科联合培养计划资助项目 ()

国防科技大学学报

OA北大核心CSCDCSTPCD

1001-2486

访问量0
|
下载量0
段落导航相关论文