| 注册
首页|期刊导航|计算机工程与应用|多任务学习及卷积神经网络在人脸识别中的应用

多任务学习及卷积神经网络在人脸识别中的应用

邵蔚元 郭跃飞

计算机工程与应用2016,Vol.52Issue(13):32-37,88,7.
计算机工程与应用2016,Vol.52Issue(13):32-37,88,7.DOI:10.3778/j.issn.1002-8331.1601-0367

多任务学习及卷积神经网络在人脸识别中的应用

Multitask learning and CNN for application of face recognition.

邵蔚元 1郭跃飞2

作者信息

  • 1. 复旦大学 计算机科学技术学院,上海 201203
  • 2. 上海市智能信息处理重点实验室(复旦大学),上海 201203
  • 折叠

摘要

Abstract

With the development of deep learning, face recognition algorithm has made tremendous breakthroughs. How-ever, among current face recognition frameworks, each task(face identification, face verification or attribute classifica-tion)is independently designed and manipulated, which makes the algorithm inefficient and time-consuming. According to the problem, this paper proposes a multi-task convolution deep network. By combining face identification, verification and attribute classification losses as this loss function, the deep convolution network can be trained from end to end and the algorithm will be simple and efficient. This network can complete these three tasks without additional steps. Experi-ments show that the model can still achieve good performance with limited training data and get 97.3% accuracy in the authoritative face recognition dataset LFW(Labeled Face in the Wild).

关键词

人脸识别/卷积神经网络/深度学习/多任务学习

Key words

face recognition/convolution neural network/deep learning/multitask learning

分类

数理科学

引用本文复制引用

邵蔚元,郭跃飞..多任务学习及卷积神经网络在人脸识别中的应用[J].计算机工程与应用,2016,52(13):32-37,88,7.

基金项目

上海市科委科技创新行动计划(No.14511106900). (No.14511106900)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文