| 注册
首页|期刊导航|计算机工程与应用|序列蛋白质-GDP绑定位点预测

序列蛋白质-GDP绑定位点预测

石大宏 何雪

计算机工程与应用2016,Vol.52Issue(13):55-59,75,6.
计算机工程与应用2016,Vol.52Issue(13):55-59,75,6.DOI:10.3778/j.issn.1002-8331.1407-0553

序列蛋白质-GDP绑定位点预测

Sequential protein-GDP binding residues prediction.

石大宏 1何雪1

作者信息

  • 1. 南京理工大学 计算机科学与工程学院,南京 210094
  • 折叠

摘要

Abstract

Accurately identifying the protein-GDP binding sites is of significant importance for both protein function anal-ysis and drug design. Protein-GDP binding residues prediction is a typical imbalanced learning problem. Directly applying the traditional machine learning approach for this task is not suitable as the learning results will be severely biased towards the majority class. To circumvent this problem, on the basis of position specific scoring matrix feature based on sparse representation, weighted under-sampling is developed to make samples balanced. Finally support vector machine is used for prediction. Experimental results show that the proposed method achieves higher prediction performances.

关键词

蛋白质-GDP绑定预测/位置特异性得分矩阵/稀疏表示/加权下采样/支持向量机

Key words

protein-GDP binding prediction/position specific scoring matrix/sparse representation/weighted under-sampling/support vector machine

分类

信息技术与安全科学

引用本文复制引用

石大宏,何雪..序列蛋白质-GDP绑定位点预测[J].计算机工程与应用,2016,52(13):55-59,75,6.

基金项目

国家自然科学基金(No.61373062). (No.61373062)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文