| 注册
首页|期刊导航|自动化学报|基于跨连卷积神经网络的性别分类模型

基于跨连卷积神经网络的性别分类模型

张婷 李玉鑑 胡海鹤 张亚红

自动化学报2016,Vol.42Issue(6):858-865,8.
自动化学报2016,Vol.42Issue(6):858-865,8.DOI:10.16383/j.aas.2016.c150658

基于跨连卷积神经网络的性别分类模型

A Gender Classification Model Based on Cross-connected Convolutional Neural Networks

张婷 1李玉鑑 1胡海鹤 1张亚红1

作者信息

  • 1. 北京工业大学计算机学院 北京 100124
  • 折叠

摘要

Abstract

To improve gender classification accuracy, we propose a cross-connected convolutional neural network (CCNN) based on traditional convolutional neural networks (CNN). The proposed model is a 9-layer structure composed of an input layer, six hidden layers (i.e., three convolutional layers alternating with three pooling layers), a fully-connected layer and an output layer, where the second pooling layer is allowed to directly connect to the fully-connected layer across two layers. Experimental results in ten face datasets show that our model can achieve gender classification accuracies not lower than those of the convolutional neural networks.

关键词

性别分类/卷积神经网络/跨连卷积神经网络/跨层连接

Key words

Gender classification/convolutional neural network (CNN)/cross-connected convolutional neural network (CCNN)/cross-layer connection

引用本文复制引用

张婷,李玉鑑,胡海鹤,张亚红..基于跨连卷积神经网络的性别分类模型[J].自动化学报,2016,42(6):858-865,8.

基金项目

国家自然科学基金(61175004),高等学校博士学科点专项科研基金(20121103110029),北京市博士后工作资助项目(2015ZZ-24:Q6007011201501)资助Supported by National Natural Science Foundation of China (61175004), Specialized Research Fund for the Doctoral Program of Higher Education of China (20121103110029), and Project Funding of Postdoctor in Beijing (2015ZZ-24:Q6007011201501) (61175004)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文