| 注册
首页|期刊导航|中国机械工程|基于主动学习GA-SVM分类器的连铸漏钢预报

基于主动学习GA-SVM分类器的连铸漏钢预报

方一鸣 胡春洋 刘乐 张兴明

中国机械工程2016,Vol.27Issue(12):1609-1614,6.
中国机械工程2016,Vol.27Issue(12):1609-1614,6.DOI:10.3969/j.issn.1004-132X.2016.12.009

基于主动学习GA-SVM分类器的连铸漏钢预报

Breakout Prediction Classifier for Continuous Casting Based on Active Learning GA-SVM

方一鸣 1胡春洋 2刘乐 1张兴明1

作者信息

  • 1. 燕山大学工业计算机控制工程河北省重点实验室,秦皇岛,066004
  • 2. 国家冷轧板带装备及工艺工程技术研究中心,秦皇岛,066004
  • 折叠

摘要

Abstract

Aiming at the problem that was difficult to obtain a high accurate breakout prediction model of continuous casting in the case of small sample data,a breakout prediction algorithm was pro—posed based on active learning GA-SVM classifier.Firstly,the algorithm preprocessed temperature data of continuous casting mold and labels valid data.Secondly,SVM model was obtained after SVM empirical parameters were optimized using labeled small sample data and GA.Finally,the optimized SVM model was tested using the historical data of a steel plant.The results show that in the case of small sample data for training model,the breakout prediction algorithm based on active learning GA-SVM classifier can obtain higher breakout prediction accuracy and 100% reported ratio.The presented breakout steel prediction algorithm was validated.

关键词

漏钢预报/GA-SVM/主动学习/小样本数据

Key words

breakout prediction/genetic algorithm-support vector machine (GA-SVM)/active learning/small sample data

分类

矿业与冶金

引用本文复制引用

方一鸣,胡春洋,刘乐,张兴明..基于主动学习GA-SVM分类器的连铸漏钢预报[J].中国机械工程,2016,27(12):1609-1614,6.

基金项目

国家自然科学基金委员会与宝钢集团有限公司联合资助项目(U1260203) (U1260203)

国家自然科学基金资助项目(61403332) (61403332)

河北省自然科学基金钢铁联合基金资助项目(F201320329) (F201320329)

河北省高等学校创新团队领军人才培育计划资助项目(LJRC013) (LJRC013)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文