一类 p-Laplacian 边值问题多个对称解的存在性OA北大核心CSTPCD
Existence of multiple symmetric solutions to a p-Laplacian boundary value problem with nonlinear term involving derivative
研究一维 p‐L aplacian动力方程(φp (u′(t))′+ h(t) f (t ,u(t),u′(t))=0,t ∈[0,1], u(0)= u(1)=ω,u′(0)=- u′(1),两点边值问题多个对称正解的存在性。利用Avery‐Peterson不动点定理,得到边值问题3个和任意奇数多个对称解的存在性,并给出例子验证所得结果。
In this paper ,we studied the following dynamic equation for the two‐point BVPs with p‐Laplacian as the form of (φp (u′(t))′+ h(t) f (t ,u(t) ,u′(t)) = 0 ,t ∈ [0 ,1] , u(0) = u(1) = ω,u′(0) = - u′(1) , the existences of triple or arbitrary odd positive symmetric solutions were obtained by using Avery‐Peterson fixed‐point theory .As an application ,one example was given to illustrate the main results .
薛益民;苏莹
徐州工程学院数学与物理科学学院,江苏徐州221111徐州工程学院数学与物理科学学院,江苏徐州221111
数理科学
边值问题对称解p-Laplacian不动点理论
boundary value problemsymmetric solutionsp-Laplacianfixed point theory
《安徽大学学报(自然科学版)》 2016 (4)
半离散可积系统及其约化系统的研究
30-36,7
国家自然科学基金资助项目(11301454);江苏省六大人才高峰项目(2013-JY-003);江苏省自然科学基金资助项目(BK20151160);徐州工程学院重点项目(2013102);徐州工程学院青年项目(XKY2013314)
评论