| 注册
首页|期刊导航|计算机工程与应用|基于SQP局部搜索的蝙蝠优化算法

基于SQP局部搜索的蝙蝠优化算法

刘万军 杨笑 曲海成

计算机工程与应用2016,Vol.52Issue(15):183-189,7.
计算机工程与应用2016,Vol.52Issue(15):183-189,7.DOI:10.3778/j.issn.1002-8331.1510-0099

基于SQP局部搜索的蝙蝠优化算法

Hybrid bat algorithm based on sequential quadratic programming local search

刘万军 1杨笑 1曲海成1

作者信息

  • 1. 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
  • 折叠

摘要

Abstract

In view of the basic bat algorithm has a few problems in low optimization accuracy, slow convergence speed and high possibility of being trapped in local optimum and so on, a hybrid bat algorithm based on Sequential Quadratic Programming(SQP)is proposed. The uniform initial population is constructed by the method of good point set, which enhances the ergodic ability of the initial population. In order to avoid premature convergence, Cauchy mutation operation is used to ensure diversity. In the late iterations, the best individual is used by SQP local search to improve the local bat depth search capabilities, which can ensure that the individual can find the global optimal solution close to the global optimal value, and to accelerate the evolution of population. The experimental results show that the improved bat algorithm has better performance, good optimization accuracy and fast convergence speed.

关键词

蝙蝠算法/序贯二次规划(SQP)/柯西变异/佳点集/早熟收敛/寻优精度

Key words

bat algorithm/Sequential Quadratic Programming(SQP)/Cauchy mutation/good point set/premature con-vergence/optimization accuracy

分类

计算机与自动化

引用本文复制引用

刘万军,杨笑,曲海成..基于SQP局部搜索的蝙蝠优化算法[J].计算机工程与应用,2016,52(15):183-189,7.

基金项目

国家高技术研究发展计划(863)(No.2012AA12A405);国家自然科学基金(No.61172144);辽宁省教育厅科学技术研究一般项目(No.L2015216)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文