| 注册
首页|期刊导航|计算机应用研究|一种催化粒子群算法及其性能分析

一种催化粒子群算法及其性能分析

孟安波 李专

计算机应用研究2016,Vol.33Issue(8):2345-2349,5.
计算机应用研究2016,Vol.33Issue(8):2345-2349,5.DOI:10.3969/j.issn.1001-3695.2016.08.024

一种催化粒子群算法及其性能分析

Catlytic particle swarm optimization and its performance analysis

孟安波 1李专1

作者信息

  • 1. 广东工业大学 自动化学院,广州 510006
  • 折叠

摘要

Abstract

To address the problems that the particle swarm optimization (PSO)algorithm is likely to be trapped into the local optima when solving the high-dimensional and multimodal optimization problems,this paper proposed a novel hybrid optimiza-tion algorithm called catalytic particle swarm optimization (CPSO).In the optimization process of CPSO,pbests represented each particle in the population,directly.And modified PSO,horizontal crossover and vertical crossover updated the population of particles in CPSO,alternatively.Each operator reproduces the moderation solutions,and the moderation solutions would generate the dominant solution pbests through greed thoughts,then the pbests would act as the father population of next opera-tor.As an evolutionary catalytic of PSO,on one hand,CSO enhanced the global search ability of PSO by horizontal crossover, and on the other,maintaining the diversity through vertical crossover.Simulation results for six benchmark functions show that the proposed algorithm demonstrates obvious advantage over other state-of-art PSO variants in terms of global convergence ca-pacity and convergence rate.

关键词

纵横交叉算法/横向交叉/纵向交叉/催化剂/粒子群算法/中庸解/占优解

Key words

crisscross search optimization/horizontal crossover/vertical crossover/catalytic/particle swarm optimization al-gorithm/moderation solution/dominant solution

分类

信息技术与安全科学

引用本文复制引用

孟安波,李专..一种催化粒子群算法及其性能分析[J].计算机应用研究,2016,33(8):2345-2349,5.

基金项目

广东省科技计划项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文