| 注册
首页|期刊导航|计算机应用研究|基于模糊聚类的 CO2数据流时空异常模式的研究

基于模糊聚类的 CO2数据流时空异常模式的研究

刘莘 张赛男

计算机应用研究2016,Vol.33Issue(8):2353-2357,5.
计算机应用研究2016,Vol.33Issue(8):2353-2357,5.DOI:10.3969/j.issn.1001-3695.2016.08.026

基于模糊聚类的 CO2数据流时空异常模式的研究

Fuzzy cluster based approach for spatial-temporal anomaly detection over CO2 data streams

刘莘 1张赛男2

作者信息

  • 1. 徐州医科大学 医学信息学院,江苏 徐州 221004
  • 2. 中国矿业大学 环境与测绘学院,江苏 徐州 221008
  • 折叠

摘要

Abstract

In view of the traditional anomaly detection algorithms could not identify CCS abnormal monitoring data types,so in order to identify the CO2 data streams anomalies caused by leakage,this paper proposed a fuzzy clustering based approach for spatial-temporal anomaly detection over CO2 data streams.Firstly,it used the 3σrules as an adaptive threshold to realize the outlier detection;Secondly,extracted the average of detecting sliding window as its characteristic value,and then built a spa-tial-temporal matrix between neighbor nodes in specified interval,analyzed the spatial-temporal correlation of adjacent nodes characteristic value based on fuzzy clustering,and classified the results.The algorithm could identify the abnormal leakage probability according to the results of the classification.Finally,this paper evaluated the algorithm by real observation data, and analyzed the selection of parameters.The results show that the proposed algorithm can recognize the anomaly caused by leakage,and has higher detection rate and lower false rate.

关键词

模糊聚类/时空异常/CO2/数据流

Key words

fuzzy cluster/spatial-temporal anomaly/CO2/data streams

分类

信息技术与安全科学

引用本文复制引用

刘莘,张赛男..基于模糊聚类的 CO2数据流时空异常模式的研究[J].计算机应用研究,2016,33(8):2353-2357,5.

基金项目

“十二五”科技支撑计划项目(2011BAC08B03);江苏高校优势学科建设工程资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文