| 注册
首页|期刊导航|南京理工大学学报(自然科学版)|一种求解柔性作业车间调度问题的改进 DRSGA

一种求解柔性作业车间调度问题的改进 DRSGA

赵小强 何浩

南京理工大学学报(自然科学版)2016,Vol.40Issue(3):297-302,6.
南京理工大学学报(自然科学版)2016,Vol.40Issue(3):297-302,6.DOI:10.14177/j.cnki.32-1397n.2016.40.03.008

一种求解柔性作业车间调度问题的改进 DRSGA

Improved DRSGA for flexible job shop scheduling

赵小强 1何浩1

作者信息

  • 1. 兰州理工大学电气工程与信息工程学院,甘肃兰州730050
  • 折叠

摘要

Abstract

To solve the problems of flexible job shop scheduling that it is difficult to determine the weight and the scheduling efficiency is poor ,an improved dynamic random search genetic algorithm ( DRSGA) is proposed here .All minimized job completing time and total machine loading are translated into single minimized objective by the efficiency coefficient method .A double-layer chromosome encoding scheme is adopted based on sequence crossover and machine allocation crossover .A variable influence space evaluation method is used to guarantee the uniform distribution of non-inferior solutions , and the diversity of population is maintained .A dynamic random search ( DRS) method and contest rules are employed to adjust key process orders and obtain the optimal scheduling scheme .The improved DRSGA is compared with the vector evaluated genetic algorithm (VEGA),the improved genetic algorithm (IMGA) and the hybrid genetic algorithm (HGA).The simulation results indicate that the average time of the optimal solution of the improved DRSGA is shorter than the other three algorithms for 41~257 s.

关键词

柔性工作/车间调度/动态随机搜索/遗传算法/功效系数法/工序/机器分配/双层染色

Key words

flexible job/shop scheduling/dynamic random search/genetic algorithm/efficiency coefficient method/sequence/machine allocation/double-layer chromosome encoding scheme/variable influence space evaluation method/contest rules

分类

信息技术与安全科学

引用本文复制引用

赵小强,何浩..一种求解柔性作业车间调度问题的改进 DRSGA[J].南京理工大学学报(自然科学版),2016,40(3):297-302,6.

基金项目

国家自然科学基金 ()

南京理工大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1005-9830

访问量0
|
下载量0
段落导航相关论文