| 注册
首页|期刊导航|数字图书馆论坛|一种基于最大匹配和向量空间模型的用户检索词规范化方法

一种基于最大匹配和向量空间模型的用户检索词规范化方法

何伟 常春

数字图书馆论坛Issue(7):34-39,6.
数字图书馆论坛Issue(7):34-39,6.DOI:10.3772/j.issn.1673-2286.2016.7.006

一种基于最大匹配和向量空间模型的用户检索词规范化方法

An Approach for Normalizing Retrieval Word Based on Maximum Matching and Vector Space Model

何伟 1常春2

作者信息

  • 1. 中国科学技术信息研究所,北京100038
  • 2. 怀化学院,怀化418008
  • 折叠

摘要

Abstract

It can conduct much more or a lit le result using free terms as retrieval word. Existing research results show that it can improve the recal and precision of a retrieval system using normalized terms from control ed vocabularies. In this paper, we propose a new approach to normalize retrieval words base on maximum matching algorithm and vector space model, which deal with the retrieval words in the two aspects of morphology and semantics. This method first exploits maximum matching to normalize the retrieval words from morphology and obtain candidate words, then respectively construct the vector of the candidate word and the retrieval word to compute semantic similarity, and final y selected the most similar candidate word as the normalized word of the retrieval word. The experimental results showed that the proposed method obtained a promising result, with the precision of more than 90%on the condition that retrieval word is a single word.

关键词

最大匹配/向量空间模型/规范化/叙词表

Key words

Maximum Matching/VSM/Normalization/Thesaurus

分类

社会科学

引用本文复制引用

何伟,常春..一种基于最大匹配和向量空间模型的用户检索词规范化方法[J].数字图书馆论坛,2016,(7):34-39,6.

基金项目

本研究得到中国博士后科学基金项目“基于叙词表语义关系的智能检索模型研究”(编号2014M550791)资助。 ()

数字图书馆论坛

OACSSCICSTPCD

1673-2286

访问量0
|
下载量0
段落导航相关论文