| 注册
首页|期刊导航|中国机械工程|基于半监督拉普拉斯特征映射的故障诊断

基于半监督拉普拉斯特征映射的故障诊断

江丽 郭顺生

中国机械工程2016,Vol.27Issue(14):1911-1916,6.
中国机械工程2016,Vol.27Issue(14):1911-1916,6.DOI:10.3969/j.issn.1004-132X.2016.14.012

基于半监督拉普拉斯特征映射的故障诊断

Fault Diagnosis Based on Semi-supervised Laplacian Eigenmaps

江丽 1郭顺生1

作者信息

  • 1. 武汉理工大学,武汉,430070
  • 折叠

摘要

Abstract

Aiming at solving the problems of insufficient labeled fault samples and high-dimen-sional nonlinear fault data,a fault diagnosis model was proposed based on semi-supervised LE algo-rithm.The model directly extracted the low-dimensional manifold features from the raw high-dimen-sional vibration signals,by implementing LE algorithm.The features were fed into semi-supervised classifier based on LE algorithm.Thereby,the operating conditions of mechanical equipment were recognized.Compared with the traditional methods,the model is able to obviously improve fault rec-ognition performance of rolling bearings and gears.

关键词

故障诊断/特征提取/流形学习/半监督拉普拉斯特征映射

Key words

fault diagnosis/feature extraction/manifold learning/semi-supervised Laplacian eigen-map(LE)

分类

计算机与自动化

引用本文复制引用

江丽,郭顺生..基于半监督拉普拉斯特征映射的故障诊断[J].中国机械工程,2016,27(14):1911-1916,6.

基金项目

国家自然科学基金资助项目(71171154) (71171154)

湖北省自然科学基金资助项目(2015CFB698) (2015CFB698)

湖北省科技支撑计划资助项目(2014BAA032,2015BAA063) (2014BAA032,2015BAA063)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文