中国农业科学2016,Vol.49Issue(12):2255-2266,12.DOI:10.3864/j.issn.0578-1752.2016.12.002
作物分子身份证构建软件ID analysis的编制
Software Development of -ID Analysis for Crop Molecular Identity Construction
摘要
Abstract
Objective]Based on the SSR molecular marker data of crops resources, software ID analysis was developed using visual Basic6.0 for crop molecular identity construction, which could screen primer combinations rapidly and accurately for efficient cultivar identification.[Method]The crop molecular ID theory was proposed by Mr. Qingshan Chen. SSR markers in crop varieties showed high polymorphism characteristics, and a set of markers was permutated and combined to quickly and effectively divide varieties with step amplification method. Finally, 40 pairs of SSR data of 40 soybean varieties in Heilongjiang province were used for identity construction with the software.[Result] ID analysis software was developed with core algorithm by using Visual Basic 6.0 to design man-machine interactive interface. This software has integrated full-library construction, partial-library construction, molecular ID determination, and database merging function. The full-library construction was the core functions together which could quickly obtained the minimum SSR prime combination to distinguish all the varieties. Partial-library construction could be used for some target varieties identification. For an unknown materials, with the already existing molecular identity database and the SSR analysis data, molecular ID determination could be used to determine the variety names or similar varieties. Database merging could be used to integrate several experimental data into a data set. The following results were analyzed by full-library construction with case data. First, among the 40 pairs of SSR data of 40 soybean cultivars, a total of 13 primers were excluded because missing data were too much and did not meet the standards, they were Sat_111, Satt218, Satt231, Satt685, Satt514, Satt551, Satt077, Satt358, Satt424, Satt100, Satt838 ,Satt893, and Satt891. Second, 6 primers were excluded because they showed high similarity coefficient with other primers, and they were Satt253, Satt192, Satt417, Sat_229, Satt127, and Satt496. Third, 5 varieties showed 7 specific alleles among all 40 varieties. They were, allele 3 of Satt516 and allele 1 of Satt253 showed in Dongnong36, allele 1 of Sat_229 showed in Nenfeng 17, allele 3 of Satt192 showed in Dongnong42, allele 1 of Satt206 and allele 4 of Satt244 showed in Beifeng 19, and allele 1 of Satt363 showed in Heihe14. So these specific allelic genes could directly identify the varieties. Forth, only seven pairs of SSR primers could distinguish 40 soybean varieties completely. The primer combinations were Satt398, Satt380, Satt453, Satt288, Satt244, Sat_092, and Satt206.[Conclusion] In this research, the software analysis ID was developed to construct crop molecular identity. The software has a friendly interface and easy to be used, high efficiency and flexible. The construction of the crop molecular identity can be realized completely by using a single software, and thus achieving the purpose of variety identification. With the development of technology of the application of capillary electrophoresis and the molecular identity theory, the development of an automatic molecular identity analysis system and even a rapid resource identification system will become possible.[Objective]Based on the SSR molecular marker data of crops resources, software ID analysis was developed using visual Basic6.0 for crop molecular identity construction, which could screen primer combinations rapidly and accurately for efficient cultivar identification.[Method]The crop molecular ID theory was proposed by Mr. Qingshan Chen. SSR markers in crop varieties showed high polymorphism characteristics, and a set of markers was permutated and combined to quickly and effectively divide varieties with step amplification method. Finally, 40 pairs of SSR data of 40 soybean varieties in Heilongjiang province were used for identity construction with the software.[Result] ID analysis software was developed with core algorithm by using Visual Basic 6.0 to design man-machine interactive interface. This software has integrated full-library construction, partial-library construction, molecular ID determination, and database merging function. The full-library construction was the core functions together which could quickly obtained the minimum SSR prime combination to distinguish all the varieties. Partial-library construction could be used for some target varieties identification. For an unknown materials, with the already existing molecular identity database and the SSR analysis data, molecular ID determination could be used to determine the variety names or similar varieties. Database merging could be used to integrate several experimental data into a data set. The following results were analyzed by full-library construction with case data. First, among the 40 pairs of SSR data of 40 soybean cultivars, a total of 13 primers were excluded because missing data were too much and did not meet the standards, they were Sat_111, Satt218, Satt231, Satt685, Satt514, Satt551, Satt077, Satt358, Satt424, Satt100, Satt838 ,Satt893, and Satt891. Second, 6 primers were excluded because they showed high similarity coefficient with other primers, and they were Satt253, Satt192, Satt417, Sat_229, Satt127, and Satt496. Third, 5 varieties showed 7 specific alleles among all 40 varieties. They were, allele 3 of Satt516 and allele 1 of Satt253 showed in Dongnong36, allele 1 of Sat_229 showed in Nenfeng 17, allele 3 of Satt192 showed in Dongnong42, allele 1 of Satt206 and allele 4 of Satt244 showed in Beifeng 19, and allele 1 of Satt363 showed in Heihe14. So these specific allelic genes could directly identify the varieties. Forth, only seven pairs of SSR primers could distinguish 40 soybean varieties completely. The primer combinations were Satt398, Satt380, Satt453, Satt288, Satt244, Sat_092, and Satt206.[Conclusion] In this research, the software analysis ID was developed to construct crop molecular identity. The software has a friendly interface and easy to be used, high efficiency and flexible. The construction of the crop molecular identity can be realized completely by using a single software, and thus achieving the purpose of variety identification. With the development of technology of the application of capillary electrophoresis and the molecular identity theory, the development of an automatic molecular identity analysis system and even a rapid resource identification system will become possible.关键词
大豆/作物/SSR标记/分子身份证/软件开发Key words
soybean/crops/SSR markers/molecular identity/software development引用本文复制引用
胡振帮,高运来,齐照明,蒋洪蔚,刘春燕,辛大伟,胡国华,潘校成,陈庆山..作物分子身份证构建软件ID analysis的编制[J].中国农业科学,2016,49(12):2255-2266,12.基金项目
国家自然科学基金青年基金(31401465)、黑龙江省留学回国人员科技项目择优资助启动项目、哈尔滨市科技创新人才研究专项资金(杰出青年人才计划类)(RC2015JQ002004)、国家自然科学基金 ()