| 注册
首页|期刊导航|灾害学|基于等距特征映射降维的台风灾情概率神经网络预评估模型

基于等距特征映射降维的台风灾情概率神经网络预评估模型

陈燕璇 刘合香 谭金凯

灾害学2016,Vol.31Issue(3):20-25,30,7.
灾害学2016,Vol.31Issue(3):20-25,30,7.DOI:10.3969/j.issn.1000-811X.2016.03.004

基于等距特征映射降维的台风灾情概率神经网络预评估模型

Probabilistic Neural Network Pre-Assessment Model Based on Isometric Feature Mapping Dimentional Reduction in Typhoon Disaster

陈燕璇 1刘合香 1谭金凯1

作者信息

  • 1. 广西师范学院 数学与统计科学学院,广西 南宁 530023
  • 折叠

摘要

Abstract

Typhoon hazard,between hazard bearing body and the disaster is a complex nonlinear dynamical system;accurately and efficiently extract the important indicators for the pre-assessment of typhoon disaster grade is an important basis for disaster prevention and relief work.In this paper,we apply principal component analysis,i-sometric feature mapping and entropy to extract key indicators of hazard bearing body,with hazard source as the in-put neurons,and disaster grade as output neurons,establishing probabilistic neural network pre-assessment model in typhoon disaster.The results show that the accuracy of probabilistic neural network pre-assessment model based on the non-linear feature extraction isometric feature mapping reaches 90%,the model has a satisfactory level of accuracy and generalization ability,provide a new way for natural disaster risk assessment,having certain reference value.

关键词

概率神经网络/等距特征映射/信息熵/台风/灾害/预评估

Key words

probabilistic neural network/Isometric Feature Mapping/entropy/typhoon/disaster/pre-as-sessment

分类

环境科学

引用本文复制引用

陈燕璇,刘合香,谭金凯..基于等距特征映射降维的台风灾情概率神经网络预评估模型[J].灾害学,2016,31(3):20-25,30,7.

基金项目

国家自然科学基金(41465003);广西研究生教育创新计划项目 ()

灾害学

OACSCDCSTPCD

1000-811X

访问量2
|
下载量0
段落导航相关论文