| 注册
首页|期刊导航|电力系统自动化|基于脉冲神经网络伪量测建模的配电网三相状态估计

基于脉冲神经网络伪量测建模的配电网三相状态估计

黄蔓云 孙国强 卫志农 臧海祥 陈通 陈胜

电力系统自动化2016,Vol.40Issue(16):38-43,82,7.
电力系统自动化2016,Vol.40Issue(16):38-43,82,7.DOI:10.7500/AEPS20151207006

基于脉冲神经网络伪量测建模的配电网三相状态估计

Three-phase State Estimation in Distribution Systems Based on Pseudo Measurement Modeling Using Spiking Neural Network

黄蔓云 1孙国强 1卫志农 1臧海祥 1陈通 1陈胜1

作者信息

  • 1. 河海大学能源与电气学院,江苏省南京市 210098
  • 折叠

摘要

Abstract

To provide comprehensive and accurate real‐time data for distribution management system (DMS) , three‐phase state estimation in distribution system is critically required . Lacking in real‐time measurements in distribution system state estimation (DSSE) , this paper presents a spiking neural network ( SNN) based method for pseudo measurement modeling . In the proposed method , the pseudo measurements are firstly derived from a few real measurements using SNN . Then , the error associated with the generated pseudo measurements is created by Gaussian mixture model ( GMM ) . At last , the three‐phase state estimation in distribution system is made based on weighted least square method . The simulation results demonstrate the accurate performance of the proposed pseudo modeling in DSSE with both regards to normal situation and communication failure .

关键词

配电网/状态估计/脉冲神经网络/高斯混合模型/伪量测

Key words

distribution network/state estimation/spiking neural network/Gaussian mixture model/pseudo measurement

引用本文复制引用

黄蔓云,孙国强,卫志农,臧海祥,陈通,陈胜..基于脉冲神经网络伪量测建模的配电网三相状态估计[J].电力系统自动化,2016,40(16):38-43,82,7.

基金项目

国家自然科学基金资助项目(51277052)。 ()

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文