| 注册
首页|期刊导航|移动通信|基于长时子带能量变化特征的语音活动检测

基于长时子带能量变化特征的语音活动检测

李宝岩

移动通信2016,Vol.40Issue(14):25-28,4.
移动通信2016,Vol.40Issue(14):25-28,4.DOI:10.3969/j.issn.1006-1010.2016.14.005

基于长时子带能量变化特征的语音活动检测

Voice Activity Detection Based on Long-Term Sub-Band Energy Variability Feature

李宝岩1

作者信息

  • 1. 吉林吉大通信设计院股份有限公司,吉林 长春 130012
  • 折叠

摘要

Abstract

Concerning the issue that the reliability of the current voice activity detection (VAD) algorithm is difficult to guarantee at low signal-to-noise ratio (SNR) conditions, this paper presented the measure of long-term sub-band energy variability to capture the sub-band energy of short-time spectrum varying over time. The performance of the feature was evaluated using Gaussian mixture models (GMMs) on the TIMIT corpus. Experimental results showed the accuracy of the proposed VAD scheme was better than that obtained by the traditional VAD schemes under ifve types of noises and different SNR conditions.

关键词

语音活动检测/长时子带能量/高斯混合模型

Key words

voice activity detection/long-term sub-band energy/Gaussian mixture models (GMMs)

分类

信息技术与安全科学

引用本文复制引用

李宝岩..基于长时子带能量变化特征的语音活动检测[J].移动通信,2016,40(14):25-28,4.

移动通信

1006-1010

访问量0
|
下载量0
段落导航相关论文