| 注册
首页|期刊导航|自动化学报|深度学习在手写汉字识别中的应用综述

深度学习在手写汉字识别中的应用综述

金连文 钟卓耀 杨钊 杨维信 谢泽澄 孙俊

自动化学报2016,Vol.42Issue(8):1125-1141,17.
自动化学报2016,Vol.42Issue(8):1125-1141,17.DOI:10.16383/j.aas.2016.c150725

深度学习在手写汉字识别中的应用综述

Applications of Deep Learning for Handwritten Chinese Character Recognition:A Review

金连文 1钟卓耀 1杨钊 2杨维信 1谢泽澄 1孙俊3

作者信息

  • 1. 华南理工大学电子与信息学院 广州 510641
  • 2. 广州大学机械与电气工程学院 广州 510641
  • 3. 富士通研究开发中心有限公司信息技术研究部 北京 100190
  • 折叠

摘要

Abstract

Handwritten Chinese character recognition (HCCR) is an important research filed of pattern recognition, which has attracted extensive studies during the past decades. With the emergence of deep learning, new breakthrough progresses of HCCR have been obtained in recent years. In this paper, we review the applications of deep learning models in the field of HCCR. First, the research background and current state-of-the-art HCCR technologies are introduced. Then, we provide a brief overview of several typical deep learning models, and introduce some widely used open source tools for deep learning. The approaches of online HCCR and offline HCCR based on deep learning are surveyed, with the summaries of the related methods, technical details, and performance analysis. Finally, further research directions are discussed.

关键词

深度学习/手写汉字识别/卷积神经网络/回归神经网络/长短时记忆模型/层叠自动编码机

Key words

Deep learning/handwritten Chinese character recognition (HCCR)/convolutional neural network/recurrent neural network/long-short term memory (LSTM)/stacked auto-encoder

引用本文复制引用

金连文,钟卓耀,杨钊,杨维信,谢泽澄,孙俊..深度学习在手写汉字识别中的应用综述[J].自动化学报,2016,42(8):1125-1141,17.

基金项目

Manuscript received November 4,2015 ()

accepted April 18,2016国家自然科学基金(61472144),广东省科技计划(2014A010103012,2015B010101004,2015B010130003,2015B010131004)资助 (61472144)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文