| 注册
首页|期刊导航|电子学报|多尺度量子谐振子算法的收敛特性

多尺度量子谐振子算法的收敛特性

王鹏 黄焱 袁亚男 都政 安俊秀

电子学报2016,Vol.44Issue(8):1988-1993,6.
电子学报2016,Vol.44Issue(8):1988-1993,6.DOI:10.3969/j.issn.0372-2112.2016.08.031

多尺度量子谐振子算法的收敛特性

Convergence Characteristics of MuIti-scaIe Quantum Harmonic OsciIIator AIgorithm

王鹏 1黄焱 2袁亚男 3都政 2安俊秀3

作者信息

  • 1. 西南民族大学,四川成都610225
  • 2. 中国科学院成都计算机应用研究所,四川成都610041
  • 3. 中国科学院大学,北京 100049
  • 折叠

摘要

Abstract

The convergence characteristics of Multi-scale Quantum Harmonic Oscillator Algorithm (MQHOA)prove that single scale convergence process cannot simultaneously get global search accuracy and local search accuracy.Only by multi-scale iteration can we gradually get the accurate position of the global optimum solution.MQHOA solves the optimiza-tion problem by two nested convergence processes:Quantum Harmonic Oscillator convergence process (QHO process)and Multi-scale convergence process (M process).QHO process shrinks the searching areas by the manner harmonic oscillator's wave function moving from high-energy state to low-energy state.M process shrinks the search areas by half cutting to im-prove searching precision.The wave function convergence theorem proves that sampling distribution is Gauss distribution when QHO process is convergent.By the wave function diagram in different energy level and scale,we can track the algo-rithm iterative process explicitly.The experiments demonstrate the shape of ground-state wave function,the existence of ze-ro-point energy on the ground state,all of which exactly match the physical model of MQHOA.

关键词

优化算法/量子算法/收敛/量子谐振子

Key words

optimization algorithm/quantum algorithm/convergence/quantum harmonic oscillator

分类

信息技术与安全科学

引用本文复制引用

王鹏,黄焱,袁亚男,都政,安俊秀..多尺度量子谐振子算法的收敛特性[J].电子学报,2016,44(8):1988-1993,6.

基金项目

国家自然科学基金(No.60702075);广东省科技厅高新技术产业化科技攻关项目(No.2011B010200007);四川省青年科学基金(No.09ZQ026-068);成都市科技局创新发展战略研究项目 ()

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文