| 注册
首页|期刊导航|计算机技术与发展|融合粒子群与蚁群的云计算任务调度算法

融合粒子群与蚁群的云计算任务调度算法

查安民 谭文安

计算机技术与发展2016,Vol.26Issue(8):24-29,6.
计算机技术与发展2016,Vol.26Issue(8):24-29,6.DOI:10.3969/j.issn.1673-629X.2016.08.005

融合粒子群与蚁群的云计算任务调度算法

A Task Scheduling Algorithm of Cloud Computing Merging Particle Swarm Optimization and Ant Colony Optimization

查安民 1谭文安1

作者信息

  • 1. 南京航空航天大学 计算机科学与技术学院,江苏 南京 210016
  • 折叠

摘要

Abstract

In cloud computing environment,there are a large number of users and tasks to be submitted by users. In order to make these tasks to be completed efficiently,how to schedule the tasks becomes the key of cloud computing. According to characteristics of cloud computing environment,improving Particle Swarm Optimization ( PSO) and Ant Colony Optimization ( ACO) ,a task scheduling algo-rithm combining PSO with ACO. It uses PSO to carry out the previous iteration,and selects a certain number of fine particles to generate the initial pheromone of ACO which carries out the post iteration by it,and then the final task scheduling result is obtained. The simulation shows that the algorithm is better than PSO and ACO,and decreases the total task completion time. It is an effective task scheduling algo-rithm.

关键词

云计算/任务调度/粒子群优化/蚁群优化

Key words

cloud computing/task scheduling/PSO/ACO

分类

信息技术与安全科学

引用本文复制引用

查安民,谭文安..融合粒子群与蚁群的云计算任务调度算法[J].计算机技术与发展,2016,26(8):24-29,6.

基金项目

国家自然科学基金资助项目(6127036) (6127036)

上海第二工业大学重点学科(XXKZD1301) (XXKZD1301)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文