| 注册
首页|期刊导航|物理学报|基于二维集合经验模式分解的距离正则化水平集磁共振图像分割∗

基于二维集合经验模式分解的距离正则化水平集磁共振图像分割∗

范虹 韦文瑾 朱艳春

物理学报2016,Vol.65Issue(16):168701-1-168701-10,10.
物理学报2016,Vol.65Issue(16):168701-1-168701-10,10.DOI:10.7498/aps.65.168701

基于二维集合经验模式分解的距离正则化水平集磁共振图像分割∗

Distance regularized level set evolution in magnetic resonance image segmention based on bi-dimensional ensemble empirical mo de decomp osition

范虹 1韦文瑾 1朱艳春2

作者信息

  • 1. 陕西师范大学计算机科学学院,西安 710062
  • 2. 中国科学院深圳先进技术研究院生物医学与健康工程研究所,深圳 518055
  • 折叠

摘要

Abstract

Original image is directly processed by the existing image segmentation algorithms, which is easily affected by noise. A bi-dimensional ensemble empirical mode decomposition (BEEMD) method is introduced to improve the accuracy of MR image segmentation by distance regularized level set (DRLSE) method. The BEEMD method is the extension of one-dimensional noise assisted data analysis from ensemble empirical mode decomposition (EEMD). The key points of BEEMD are as follows. four-neighborhood optimization is used to find extermum; three-spline interpolation is used to obtain the envelope;amplitude standard of added white noise is restricted;a certain time of integration is used to avoid modality aliasing problem. The main steps of the proposed method are as follows. Firstly, the MR image is decomposed into a number of two-dimensional intrinsic mode functions (BIMF) by BEEMD method;different weighting coefficients are endued to BIMF for image reconstruction to enhance the segmentation target. Secondly, part of BIMF components are added into edge indicator function of DRLSE to recover the blurring boundary caused by Gauss smooth operation. Then DRLSE is used to segment the reconstructed MR image. High accuracy and robustness of proposed algorithm are obtained in both simulations and clinical MR images. However, compared with DRLSE, the proposed method is complex and time consuming because using BEEMD for preprocessing the segmentation image.

关键词

磁共振图像/距离正则化水平集/二维集合经验模式分解/固有模式函数

Key words

magnetic resonance image/distance regularized level set evolution/bi-dimensional ensemble empirical mode decomposition/intrinsic mode functions

引用本文复制引用

范虹,韦文瑾,朱艳春..基于二维集合经验模式分解的距离正则化水平集磁共振图像分割∗[J].物理学报,2016,65(16):168701-1-168701-10,10.

基金项目

陕西省自然科学基金(批准号:2014JM2-6115)、陕西省科学技术研究发展计划(批准号:2012K06-36)和国家自然科学基金(批准号:41271518)资助的课题.* Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No.2014JM2-6115), the Science and Technology Research and Development Program of Shaanxi Province, China (Grant No.2012K06-36), and the National Natural Science Foundation of China (Grant No.41271518) (批准号:2014JM2-6115)

物理学报

OA北大核心CSCDCSTPCD

1000-3290

访问量0
|
下载量0
段落导航相关论文