| 注册
首页|期刊导航|信息与控制|一种基于多示例学习的局部离群点检测算法

一种基于多示例学习的局部离群点检测算法

钱景辉 窦立阳 李荣雨

信息与控制2016,Vol.45Issue(4):471-478,8.
信息与控制2016,Vol.45Issue(4):471-478,8.DOI:10.13976/j.cnki.xk.2016.0471

一种基于多示例学习的局部离群点检测算法

Local Outlier Detection Algorithm Based on Multi-instance Learning

钱景辉 1窦立阳 1李荣雨1

作者信息

  • 1. 南京工业大学计算机科学与技术学院,江苏南京 211816
  • 折叠

摘要

Abstract

In this paper,we propose a local outlier detection algorithm based on multi-instance learning (LOF-MIL).In our approach,polysemous objects are abstracted to a multi-instance using an MIL framework,then the MIL-LOF calculates the comprehensive outlier factor and detects outliers by adopting degradation strategies and making weight adjustments.We compared our approach with the classic local outlier detection algorithm and its optimization algorithm on both public and real data sets.Experimental results show that our method a-chieves better accuracy,comprehesiveness,and efficiency.

关键词

机器学习/局部离群点/多示例学习/综合离群点因子

Key words

machine learning/local outlier/multi-instance learning/comprehensive outlier factor

分类

信息技术与安全科学

引用本文复制引用

钱景辉,窦立阳,李荣雨..一种基于多示例学习的局部离群点检测算法[J].信息与控制,2016,45(4):471-478,8.

基金项目

江苏省高校自然科学基金资助项目 ()

信息与控制

OA北大核心CSCDCSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文