| 注册
首页|期刊导航|西安电子科技大学学报(自然科学版)|多方法融合的粒子滤波算法的神经丝自动跟踪

多方法融合的粒子滤波算法的神经丝自动跟踪

巨刚 袁亮 刘小月

西安电子科技大学学报(自然科学版)2016,Vol.43Issue(4):184-190,7.
西安电子科技大学学报(自然科学版)2016,Vol.43Issue(4):184-190,7.DOI:10.3969/j.issn.1001-2400.2016.04.032

多方法融合的粒子滤波算法的神经丝自动跟踪

Neurofilament protein automatic tracking of the particle filter algorithm based on multiple methods fusion

巨刚 1袁亮 1刘小月1

作者信息

  • 1. 新疆大学机械工程学院,新疆乌鲁木齐 830047
  • 折叠

摘要

Abstract

The neurofilament protein serves as the marker of the state for ALS ( Amyotrophic Lateral Sclerosis) in the medical filed . In order to accurately capture the motion characteristics of the neurofilament protein in the axon , a new‐type algorithm based on the particle filtering of multiple methods‐fusion is introduced in this paper . This fusion algorithm integrates the advantages of the color histogram , kernel function method , and graph model strength into the particle filtering algorithm . In addition , in order to solve the problem of sample impoverishment , which will lead to the majority of particles overlapping on one single point in the computation of the particle filter , the re‐sampling method is utilitied . However , the re‐sampling method easily causes the loss of the particle anisotropy , which will reduce the tracking precision or even fail to the track . We present a new re‐sampling constrained method to improve the particle anisotropy in the particle filtering . Experimental results indicate that the algorithm based on the improved method of re‐sampling and the particle filter of multiple methods‐fusion can effectively reduce the number of overlapping particles and precisely track the deformed neurofilament protein . Such a tracking method will be helpful in the research on the neurofilament protein in the medical filed .

关键词

目标跟踪/重要性采样/多方法融合/神经丝蛋白质/粒子滤波/重采样约束

Key words

target tracking/importance sampling/multiple methods-fusion/neurofilament protein/particle filtering/re-sampling constraints

分类

信息技术与安全科学

引用本文复制引用

巨刚,袁亮,刘小月..多方法融合的粒子滤波算法的神经丝自动跟踪[J].西安电子科技大学学报(自然科学版),2016,43(4):184-190,7.

基金项目

国家自然科学基金资助项目(31460248,61262059);新疆优秀青年科技创新人才培养资助项目(2013721016);新疆大学博士启动基金资助项目;自治区科技支疆资助项目(201591102);新疆自治区研究生科研创新资助项目 ()

西安电子科技大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-2400

访问量0
|
下载量0
段落导航相关论文