| 注册
首页|期刊导航|计算机工程与应用|融合特征排序的多标记特征选择算法

融合特征排序的多标记特征选择算法

王晨曦 林梦雷 刘景华 王娟 林耀进

计算机工程与应用2016,Vol.52Issue(17):93-100,8.
计算机工程与应用2016,Vol.52Issue(17):93-100,8.DOI:10.3778/j.issn.1002-8331.1506-0067

融合特征排序的多标记特征选择算法

Multi-label feature selection via fusing feature ranking

王晨曦 1林梦雷 2刘景华 2王娟 2林耀进2

作者信息

  • 1. 漳州职业技术学院 计算机工程系,福建 漳州 363000
  • 2. 闽南师范大学 计算机学院,福建 漳州 363000
  • 折叠

摘要

Abstract

In the framework of multi-label learning, feature selection is a powerful tool for solving the curse of dimension-ality, which can improve the classification performance of multi-label classifier. In this paper, a multi-label feature selec-tion algorithm via fusing feature ranking is proposed. First, it conducts adaptive graining samples based on different labels and employs the neighborhood of sample to compute the neighborhood mutual information between feature and label, which can measure the importance degree of feature. Then, all features are sorted in descending order by the value of their neighborhood mutual information under each label. Finally, it acquires a new feature rank by fusing all individual feature rank lists. Experiment is conducted on four data sets, and four evaluation criteria are used to measure the effectiveness. Experi-mental results show that the proposed algorithm is superior to several state-of-the-art multi-label feature selection algorithms.

关键词

特征选择/多标记分类/聚类融合/互信息

Key words

feature selection/multi-label classification/clustering ensemble/mutual information

分类

信息技术与安全科学

引用本文复制引用

王晨曦,林梦雷,刘景华,王娟,林耀进..融合特征排序的多标记特征选择算法[J].计算机工程与应用,2016,52(17):93-100,8.

基金项目

国家自然科学基金(No.61303131,No.61379021);福建省自然科学基金(No.2013J01028);福建省高校杰出青年科研人才培育计划(No.JA14192);漳州市科技项目(No.ZZ2013J04,No.ZZ2014J14)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文