浙江大学学报(理学版)2016,Vol.43Issue(5):505-511,7.DOI:10.3785/j.issn.1008-9497.2016.05.001
微分多项式环的半交换性和对称性
The semicommutativity and symmetry of differential polynomial rings
摘要
Abstract
This paper investigates the generalized semicommutativity and generalized symmetry of the differential pol‐ynomial rings and Ore extensions of a ring .By using the itemized analysis method on polynomials ,we proved that if R is δ‐Armendariz ring ,then R[x;δ] is nil‐semicommutative ring (resp .,weakly semicommutative ,generalized weak symmetry (GWS) ,weak zip ,right weak McCoy) if and only if R is nil‐semicommutative ring (resp .,weakly semicommutative ,GWS ,weak zip ,right weak McCoy) .Moreover ,if R is a weakly 2‐primal and (α,δ)‐condition ring ,then R[x;α,δ] is nil‐semicommutative ring (resp .,weakly semicommutative ,GWS) .关键词
弱2-素环/δ-Armendariz环/(α,δ)-条件环/诣零半交换环/广义弱对称环Key words
weakly 2-primal ring/δ-Armendariz ring/(α,δ)-condition ring/nil-semicommutative ring/generalized weak symmetry ring分类
数理科学引用本文复制引用
任艳丽,张玖琳,王尧..微分多项式环的半交换性和对称性[J].浙江大学学报(理学版),2016,43(5):505-511,7.基金项目
国家自然科学基金资助项目(11071097);江苏省自然科学基金资助项目(BK20141476). ()