非线性项在零点非渐进增长的四阶边值问题单侧全局分歧OA北大核心CSCDCSTPCD
Unilateral global bifurcation for fourth-order boundary value problem with non-asymptotic nonlinearity at 0
建立一类四阶两点边值问题 x′‴+ kx″+ lx=λh(t)x+ g(t ,x ,λ),0< t<1,x(0)= x(1)= x′(0)= x′(1)=0的Dancer‐型单侧全局分歧结果。当扰动函数 g:(0,1)× R2→ R满足一些自然条件时,可以得到(λk ,0)是所研究问题的一个分歧点,并且存在从(λk ,0)发出的2个不同的连通分支C+k 和Ck-,其中λk是对应于上述线性特征值问题的第k个特征值。作为其应用,进一步研究了一类含参数…查看全部>>
We present a Dancer‐type unilateral global bifurcation result for a class of fourth‐order two‐point boundary value problem x′‴+ kx″+ lx=λh(t)x+ g(t ,x ,λ) ,0< t<1 ,x(0)= x(1)= x′(0)= x′(1)=0 .Under some natural hypotheses on the perturbation function g:(0 ,1) × R2 → R ,we show that (λk ,0) is a bifurcation point of the above problem .And there are two distinct unbounded continuas ,C+k and Ck- ,consisting of the bifurcation branch Ck from (λk ,0) ,where…查看全部>>
沈文国
兰州工业学院,基础学科部,甘肃兰州730050
数理科学
四阶问题单侧全局分歧结点解非线性项在零点非渐进增长
fourth-order problemsunilateral global bifurcationnodal solutionsnon-asymptotic non-linearity at 0
《浙江大学学报(理学版)》 2016 (5)
非线性微分方程结点解的全局结构
525-531,7
Supported by the National Natural Science Foundation of China (11561038);the Gansu Provincial Natural Science Foun-dation(145RJZA087).
评论