| 注册
首页|期刊导航|铁道科学与工程学报|改进的粒子滤波算法及其在车牌跟踪中的应用

改进的粒子滤波算法及其在车牌跟踪中的应用

肖宇麒 潘迪夫 韩锟

铁道科学与工程学报2016,Vol.13Issue(7):1393-1400,8.
铁道科学与工程学报2016,Vol.13Issue(7):1393-1400,8.

改进的粒子滤波算法及其在车牌跟踪中的应用

I mproved particle filter algorith m and its application in target tracking

肖宇麒 1潘迪夫 1韩锟1

作者信息

  • 1. 中南大学 交通运输工程学院,湖南 长沙410075
  • 折叠

摘要

Abstract

To solve the problems of low accuracy,inefficiency and sample impoverishment of particle filter meth-od,the improved method combining quantum particle swarm optimization and adaptive genetic algorithm was pro-posed.After re-sampling,the particle distribution was improved by the position renewal equation of the quantum particle swarm optimization.Then the samples were sorted according to their fitness,and the particles with fitness values less than average fitness were filtered.Then optimal samples were selected to replace the abandoned ones and crossover,mutate with adaptive genetic algorithm,so as to ensure the sample validity and diversity.The modified algorithm was simulated in nonlinear target tracking model and time-constant value model and proved to be high in algorithm accuracy and numerical value stability.This method was also applied to the car tracking ex-periment and proved to be very efficient and accurate especially under the condition that the target moved fast and the intensity and background changed dramatically.

关键词

粒子滤波/车牌跟踪/量子粒子群算法/自适应遗传算法

Key words

particle filter/license plate tracking/quantum particle swarm optimization/adaptive genetic algo-rithm

分类

信息技术与安全科学

引用本文复制引用

肖宇麒,潘迪夫,韩锟..改进的粒子滤波算法及其在车牌跟踪中的应用[J].铁道科学与工程学报,2016,13(7):1393-1400,8.

基金项目

国家自然科学基金资助项目 ()

铁道科学与工程学报

OA北大核心CSCDCSTPCD

1672-7029

访问量0
|
下载量0
段落导航相关论文