| 注册
首页|期刊导航|计算机应用与软件|一种基于极限学习机的在线负增量算法

一种基于极限学习机的在线负增量算法

谢林森 任婷婷 卢诚波

计算机应用与软件2016,Vol.33Issue(9):269-272,4.
计算机应用与软件2016,Vol.33Issue(9):269-272,4.DOI:10.3969/j.issn.1000-386x.2016.09.063

一种基于极限学习机的在线负增量算法

AN ONLINE NEGATIVE INCREMENTAL ALGORITHM BASED ON EXTREME LEARNING MACHINE

谢林森 1任婷婷 2卢诚波1

作者信息

  • 1. 丽水学院工程与设计学院 浙江 丽水 323000
  • 2. 浙江师范大学数理与信息工程学院 浙江 金华 321004
  • 折叠

摘要

Abstract

After weeding out the dirty data that affecting the performance of single hidden layer feedforward network,traditional extreme learning machine has the need to train the entire networks.However,this will increase a lot of extra training time.In light of this issue,the paper proposes an online negative incremental algorithm based on traditional extreme learning machine algorithm:after the “dirty training sample”being eliminated,there has no need to train the whole networks once again,but only need to accomplish the network update by updating output weights matrix on the basis of original.The complexity analysis of the algorithm and the result of simulation experiment show that the proposed algorithm has higher execution speed.

关键词

极限学习机/负增量算法/算法复杂性/仿真实验

Key words

Extreme learning machine/Negative incremental algorithm/Algorithm’s complexity/Simulation experiment

分类

信息技术与安全科学

引用本文复制引用

谢林森,任婷婷,卢诚波..一种基于极限学习机的在线负增量算法[J].计算机应用与软件,2016,33(9):269-272,4.

基金项目

国家自然科学基金面上项目(11171137);浙江省自然科学基金项目(LY13A010008)。 ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文