| 注册
首页|期刊导航|现代电子技术|基于人工鱼群算法的网络流量预测方法

基于人工鱼群算法的网络流量预测方法

马浩

现代电子技术2016,Vol.39Issue(18):73-75,79,4.
现代电子技术2016,Vol.39Issue(18):73-75,79,4.DOI:10.16652/j.issn.1004-373x.2016.18.018

基于人工鱼群算法的网络流量预测方法

Network traffic forecasting method based on artificial fish swarm algorithm

马浩1

作者信息

  • 1. 运城学院 计算机科学与技术系,山西 运城 044000
  • 折叠

摘要

Abstract

The support vector regression algorithm of the nonlinear prediction model is used in this paper to establish the forecasting model to study the prediction of the network traffic with obvious nonstationarity,chaos and nonlinearity. In this pa⁃per,the artificial fish swarm algorithm is adopted to optimize the parameters of support vector regression algorithm. The PSO al⁃gorithm is used to improve the conventional artificial fish swarm algorithm. The Logistic map is used to initialize the position of the artificial fish to improve the diversity of the population,so as to improve the global optimization ability of the algorithm and avoid the algorithm falling into local minimum value. The data of three groups with different time granularity are analyzed by using MAWI data. The results show that the artificial fish swarm algorithm has better prediction performance and can meet the needs of network traffic prediction.

关键词

网络流量预测/人工鱼群算法/支持向量回归/混沌机制/粒子群优化

Key words

network traffic prediction/artificial fish swarm algorithm/support vector regression/chaos mechanism/parti-cle swarm optimization

分类

信息技术与安全科学

引用本文复制引用

马浩..基于人工鱼群算法的网络流量预测方法[J].现代电子技术,2016,39(18):73-75,79,4.

基金项目

国家自然科学基金项目(61303232);2015年广东省佛山市机电专业群工程技术开发中心开放基金基于物联网技术的产品质量控制系统设计与开发 ()

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文