郑州大学学报(理学版)2016,Vol.48Issue(3):43-46,4.DOI:10.13705/j.issn.1671-6841.2016031
满足ω(D)≤3的Diophantine方程组x+1=6 Dy2,x2-x+1=3 z2
The Diophantine System x+1=6 Dy2 and x2 -x+1=3 z2 with ω(D)≤3
摘要
Abstract
Let D be a positive integer with square free, and let ω( D ) denote the number of distinct prime divisors of D. Using some properties of quadratic and quartic Diophantine equations, it was proved that ifω(D)≤3, then the equation system x+1=6Dy2 and x2 -x+1=3z2 had only the positive integer solutions (D,x,y,z) =(182,4 367,2,2 521) and (1 711 759,164 328 863,4,94 875 313).关键词
Diophantine方程组/无平方因子正整数/不同素因子的个数Key words
Diophantine system/positive integer with square free/number of distinct prime divisors分类
数理科学引用本文复制引用
呼家源,李小雪..满足ω(D)≤3的Diophantine方程组x+1=6 Dy2,x2-x+1=3 z2[J].郑州大学学报(理学版),2016,48(3):43-46,4.基金项目
国家自然科学基金资助项目(11371291) (11371291)
陕西省自然科学基金重点资助项目(2013JZ001) (2013JZ001)
河套学院自然科学青年基金资助项目(HYZQ201412) (HYZQ201412)